VQE
class VQE(operator=None, var_form=None, optimizer=None, initial_point=None, expectation=None, include_custom=False, max_evals_grouped=1, aux_operators=None, callback=None, quantum_instance=None)
The Variational Quantum Eigensolver algorithm.
VQE is a hybrid algorithm that uses a variational technique and interleaves quantum and classical computations in order to find the minimum eigenvalue of the Hamiltonian of a given system.
An instance of VQE requires defining two algorithmic sub-components: a trial state (ansatz) from Aqua’s variational_forms
, and one of the classical optimizers
. The ansatz is varied, via its set of parameters, by the optimizer, such that it works towards a state, as determined by the parameters applied to the variational form, that will result in the minimum expectation value being measured of the input operator (Hamiltonian).
An optional array of parameter values, via the initial_point, may be provided as the starting point for the search of the minimum eigenvalue. This feature is particularly useful such as when there are reasons to believe that the solution point is close to a particular point. As an example, when building the dissociation profile of a molecule, it is likely that using the previous computed optimal solution as the starting initial point for the next interatomic distance is going to reduce the number of iterations necessary for the variational algorithm to converge. Aqua provides an initial point tutorial detailing this use case.
The length of the initial_point list value must match the number of the parameters expected by the variational form being used. If the initial_point is left at the default of None
, then VQE will look to the variational form for a preferred value, based on its given initial state. If the variational form returns None
, then a random point will be generated within the parameter bounds set, as per above. If the variational form provides None
as the lower bound, then VQE will default it to ; similarly, if the variational form returns None
as the upper bound, the default value will be .
The VQE stores the parameters of var_form
sorted by name to map the values provided by the optimizer to the circuit. This is done to ensure reproducible results, for example such that running the optimization twice with same random seeds yields the same result. Also, the optimal_point
of the result object can be used as initial point of another VQE run by passing it as initial_point
to the initializer.
Parameters
- operator (
Union
[OperatorBase
,LegacyBaseOperator
,None
]) – Qubit operator of the Observable - var_form (
Union
[QuantumCircuit
,VariationalForm
,None
]) – A parameterized circuit used as Ansatz for the wave function. - optimizer (
Optional
[Optimizer
]) – A classical optimizer. - initial_point (
Optional
[ndarray
]) – An optional initial point (i.e. initial parameter values) for the optimizer. IfNone
then VQE will look to the variational form for a preferred point and if not will simply compute a random one. - expectation (
Optional
[ExpectationBase
]) – The Expectation converter for taking the average value of the Observable over the var_form state function. WhenNone
(the default) anExpectationFactory
is used to select an appropriate expectation based on the operator and backend. When using Aer qasm_simulator backend, with paulis, it is however much faster to leverage custom Aer function for the computation but, although VQE performs much faster with it, the outcome is ideal, with no shot noise, like using a state vector simulator. If you are just looking for the quickest performance when choosing Aer qasm_simulator and the lack of shot noise is not an issue then set include_custom parameter here toTrue
(defaults toFalse
). - include_custom (
bool
) – When expectation parameter here is None setting this toTrue
will allow the factory to include the custom Aer pauli expectation. - max_evals_grouped (
int
) – Max number of evaluations performed simultaneously. Signals the given optimizer that more than one set of parameters can be supplied so that potentially the expectation values can be computed in parallel. Typically this is possible when a finite difference gradient is used by the optimizer such that multiple points to compute the gradient can be passed and if computed in parallel improve overall execution time. - aux_operators (
Optional
[List
[Union
[OperatorBase
,LegacyBaseOperator
,None
]]]) – Optional list of auxiliary operators to be evaluated with the eigenstate of the minimum eigenvalue main result and their expectation values returned. For instance in chemistry these can be dipole operators, total particle count operators so we can get values for these at the ground state. - callback (
Optional
[Callable
[[int
,ndarray
,float
,float
],None
]]) – a callback that can access the intermediate data during the optimization. Four parameter values are passed to the callback as follows during each evaluation by the optimizer for its current set of parameters as it works towards the minimum. These are: the evaluation count, the optimizer parameters for the variational form, the evaluated mean and the evaluated standard deviation.` - quantum_instance (
Union
[QuantumInstance
,BaseBackend
,None
]) – Quantum Instance or Backend
Attributes
aux_operators
Type: Optional[List[Optional[qiskit.aqua.operators.operator_base.OperatorBase]]]
Returns aux operators
Return type
Optional
[List
[Optional
[OperatorBase
]]]
backend
expectation
Type: qiskit.aqua.operators.expectations.expectation_base.ExpectationBase
The expectation value algorithm used to construct the expectation measurement from the observable.
Return type
initial_point
Type: Optional[numpy.ndarray]
Returns initial point
Return type
Optional
[ndarray
]
operator
Type: Optional[qiskit.aqua.operators.operator_base.OperatorBase]
Returns operator
Return type
Optional
[OperatorBase
]
optimal_params
Type: List[float]
The optimal parameters for the variational form.
Return type
List
[float
]
optimizer
Type: Optional[qiskit.aqua.components.optimizers.optimizer.Optimizer]
Returns optimizer
Return type
Optional
[Optimizer
]
quantum_instance
Type: Union[None, qiskit.aqua.quantum_instance.QuantumInstance]
Returns quantum instance.
Return type
Optional
[QuantumInstance
]
random
Return a numpy random.
setting
Prepare the setting of VQE as a string.
var_form
Type: Optional[Union[qiskit.circuit.quantumcircuit.QuantumCircuit, qiskit.aqua.components.variational_forms.variational_form.VariationalForm]]
Returns variational form
Return type
Union
[QuantumCircuit
, VariationalForm
, None
]
Methods
cleanup_parameterized_circuits
VQE.cleanup_parameterized_circuits()
set parameterized circuits to None
compute_minimum_eigenvalue
VQE.compute_minimum_eigenvalue(operator=None, aux_operators=None)
Computes minimum eigenvalue. Operator and aux_operators can be supplied here and if not None will override any already set into algorithm so it can be reused with different operators. While an operator is required by algorithms, aux_operators are optional. To ‘remove’ a previous aux_operators array use an empty list here.
Parameters
- operator (
Union
[OperatorBase
,LegacyBaseOperator
,None
]) – If not None replaces operator in algorithm - aux_operators (
Optional
[List
[Union
[OperatorBase
,LegacyBaseOperator
,None
]]]) – If not None replaces aux_operators in algorithm
Return type
Returns
MinimumEigensolverResult
construct_circuit
VQE.construct_circuit(parameter)
Generate the ansatz circuit and expectation value measurement, and return their runnable composition.
Parameters
parameter (Union
[List
[float
], List
[Parameter
], ndarray
]) – Parameters for the ansatz circuit.
Return type
Returns
The Operator equalling the measurement of the ansatz StateFn
by the Observable’s expectation StateFn
.
Raises
AquaError – If no operator has been provided.
find_minimum
VQE.find_minimum(initial_point=None, var_form=None, cost_fn=None, optimizer=None, gradient_fn=None)
Optimize to find the minimum cost value.
Parameters
- initial_point (
Optional
[ndarray
]) – If not None will be used instead of any initial point supplied via constructor. If None and None was supplied to constructor then a random point will be used if the optimizer requires an initial point. - var_form (
Union
[QuantumCircuit
,VariationalForm
,None
]) – If not None will be used instead of any variational form supplied via constructor. - cost_fn (
Optional
[Callable
]) – If not None will be used instead of any cost_fn supplied via constructor. - optimizer (
Optional
[Optimizer
]) – If not None will be used instead of any optimizer supplied via constructor. - gradient_fn (
Optional
[Callable
]) – Optional gradient function for optimizer
Returns
Optimized variational parameters, and corresponding minimum cost value.
Return type
dict
Raises
ValueError – invalid input
get_optimal_circuit
get_optimal_cost
VQE.get_optimal_cost()
Get the minimal cost or energy found by the VQE.
Return type
float
get_optimal_vector
VQE.get_optimal_vector()
Get the simulation outcome of the optimal circuit.
Return type
Union
[List
[float
], Dict
[str
, int
]]
get_prob_vector_for_params
VQE.get_prob_vector_for_params(construct_circuit_fn, params_s, quantum_instance, construct_circuit_args=None)
Helper function to get probability vectors for a set of params
get_probabilities_for_counts
VQE.get_probabilities_for_counts(counts)
get probabilities for counts
print_settings
VQE.print_settings()
Preparing the setting of VQE into a string.
Returns
the formatted setting of VQE
Return type
str
run
VQE.run(quantum_instance=None, **kwargs)
Execute the algorithm with selected backend.
Parameters
- quantum_instance (
Union
[QuantumInstance
,BaseBackend
,None
]) – the experimental setting. - kwargs (dict) – kwargs
Returns
results of an algorithm.
Return type
dict
Raises
AquaError – If a quantum instance or backend has not been provided
set_backend
VQE.set_backend(backend, **kwargs)
Sets backend with configuration.
Return type
None
supports_aux_operators
VQE.supports_aux_operators()
Whether computing the expectation value of auxiliary operators is supported.
If the minimum eigensolver computes an eigenstate of the main operator then it can compute the expectation value of the aux_operators for that state. Otherwise they will be ignored.
Return type
bool
Returns
True if aux_operator expectations can be evaluated, False otherwise