Skip to main contentIBM Quantum Documentation

KAK

class KAK(params)[source]

GitHub

Bases: TwoQubitAnsatzBlock

Two-qubit ansatz block based on the KAK decomposition.

Initialize the ansatz block.

Parameters

params (Sequence[Parameter]) – Sequence of parameters.


Attributes

ansatz_name

Default value: 'KAK'

ansatz_num_params

Default value: 3

ansatz_num_qubits

Default value: 2

base_class

Get the base class of this instruction. This is guaranteed to be in the inheritance tree of self.

The “base class” of an instruction is the lowest class in its inheritance tree that the object should be considered entirely compatible with for _all_ circuit applications. This typically means that the subclass is defined purely to offer some sort of programmer convenience over the base class, and the base class is the “true” class for a behavioral perspective. In particular, you should not override base_class if you are defining a custom version of an instruction that will be implemented differently by hardware, such as an alternative measurement strategy, or a version of a parametrized gate with a particular set of parameters for the purposes of distinguishing it in a Target from the full parametrized gate.

This is often exactly equivalent to type(obj), except in the case of singleton instances of standard-library instructions. These singleton instances are special subclasses of their base class, and this property will return that base. For example:

>>> isinstance(XGate(), XGate)
True
>>> type(XGate()) is XGate
False
>>> XGate().base_class is XGate
True

In general, you should not rely on the precise class of an instruction; within a given circuit, it is expected that Instruction.name should be a more suitable discriminator in most situations.

condition

The classical condition on the instruction.

condition_bits

Get Clbits in condition.

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return instruction label

mutable

Is this instance is a mutable unique instance or not.

If this attribute is False the gate instance is a shared singleton and is not mutable.

name

Return the name.

num_clbits

Return the number of clbits.

num_qubits

Return the number of qubits.

params

The parameters of this Instruction. Ideally these will be gate angles.

unit

Get the time unit of duration.


Methods

add_decomposition

add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble

assemble()

Assemble a QasmQobjInstruction

Deprecated since version 1.2

The method qiskit.circuit.instruction.Instruction.assemble() is deprecated as of qiskit 1.2. It will be removed in the 2.0 release. The Qobj class and related functionality are part of the deprecated BackendV1 workflow, and no longer necessary for BackendV2. If a user workflow requires Qobj it likely relies on deprecated functionality and should be updated to use BackendV2.

broadcast_arguments

broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]

Parameters

  • qargs (list) – List of quantum bit arguments.
  • cargs (list) – List of classical bit arguments.

Return type

Iterable[tuple[list, list]]

Returns

A tuple with single arguments.

Raises

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if

c_if(classical, val)

Set a classical equality condition on this instruction between the register or cbit classical and value val.

Note

This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.

control

control(num_ctrl_qubits=1, label=None, ctrl_state=None, annotated=None)

Return the controlled version of itself.

Implemented either as a controlled gate (ref. ControlledGate) or as an annotated operation (ref. AnnotatedOperation).

Parameters

  • num_ctrl_qubits (int) – number of controls to add to gate (default: 1)
  • label (str | None) – optional gate label. Ignored if implemented as an annotated operation.
  • ctrl_state (int | str | None) – the control state in decimal or as a bitstring (e.g. '111'). If None, use 2**num_ctrl_qubits-1.
  • annotated (bool | None) – indicates whether the controlled gate is implemented as an annotated gate. If None, this is set to False if the controlled gate can directly be constructed, and otherwise set to True. This allows defering the construction process in case the synthesis of the controlled gate requires more information (e.g. values of unbound parameters).

Returns

Controlled version of the given operation.

Raises

QiskitError – unrecognized mode or invalid ctrl_state

copy

copy(name=None)

Copy of the instruction.

Parameters

name (str) – name to be given to the copied circuit, if None then the name stays the same.

Returns

a copy of the current instruction, with the name updated if it was provided

Return type

qiskit.circuit.Instruction

inverse

inverse(annotated=False)

Invert this instruction.

If annotated is False, the inverse instruction is implemented as a fresh instruction with the recursively inverted definition.

If annotated is True, the inverse instruction is implemented as AnnotatedOperation, and corresponds to the given instruction annotated with the “inverse modifier”.

Special instructions inheriting from Instruction can implement their own inverse (e.g. T and Tdg, Barrier, etc.) In particular, they can choose how to handle the argument annotated which may include ignoring it and always returning a concrete gate class if the inverse is defined as a standard gate.

Parameters

annotated (bool) – if set to True the output inverse gate will be returned as AnnotatedOperation.

Returns

The inverse operation.

Raises

CircuitError – if the instruction is not composite and an inverse has not been implemented for it.

is_parameterized

is_parameterized()

Return whether the Instruction contains compile-time parameters.

power

power(exponent, annotated=False)

Raise this gate to the power of exponent.

Implemented either as a unitary gate (ref. UnitaryGate) or as an annotated operation (ref. AnnotatedOperation). In the case of several standard gates, such as RXGate, when the power of a gate can be expressed in terms of another standard gate that is returned directly.

Parameters

  • exponent (float) – the power to raise the gate to
  • annotated (bool) – indicates whether the power gate can be implemented as an annotated operation. In the case of several standard gates, such as RXGate, this argument is ignored when the power of a gate can be expressed in terms of another standard gate.

Returns

An operation implementing gate^exponent

Raises

CircuitError – If gate is not unitary

repeat

repeat(n)

Creates an instruction with self repeated :math`n` times.

If this operation has a conditional, the output instruction will have the same conditional and the inner repeated operations will be unconditional; instructions within a compound definition cannot be conditioned on registers within Qiskit’s data model. This means that it is not valid to apply a repeated instruction to a clbit that it both writes to and reads from in its condition.

Parameters

n (int) – Number of times to repeat the instruction

Returns

Containing the definition.

Return type

qiskit.circuit.Instruction

Raises

CircuitError – If n < 1.

reverse_ops

reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

Returns

a new instruction with

sub-instructions reversed.

Return type

qiskit.circuit.Instruction

soft_compare

soft_compare(other)

Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.

Parameters

other (instruction) – other instruction.

Returns

are self and other equal up to parameter expressions.

Return type

bool

to_matrix

to_matrix()

Return a Numpy.array for the gate unitary matrix.

Returns

if the Gate subclass has a matrix definition.

Return type

np.ndarray

Raises

CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.

to_mutable

to_mutable()

Return a mutable copy of this gate.

This method will return a new mutable copy of this gate instance. If a singleton instance is being used this will be a new unique instance that can be mutated. If the instance is already mutable it will be a deepcopy of that instance.

validate_parameter

validate_parameter(parameter)

Gate parameters should be int, float, or ParameterExpression

Was this page helpful?
Report a bug or request content on GitHub.